A fundamental question in any peer-to-peer ride-sharing system is how to, both effectively and efficiently, meet the request of passengers to balance the supply and demand in real time. On the passenger side, traditional approaches focus on pricing strategies by increasing the probability of users' call to adjust the distribution of demand. However, previous methods do not take into account the impact of changes in strategy on future supply and demand changes, which means drivers are repositioned to different destinations due to passengers' calls, which will affect the driver's income for a period of time in the future. Motivated by this observation, we make an attempt to optimize the distribution of demand to handle this problem by learning the long-term spatio-temporal values as a guideline for pricing strategy. In this study, we propose an offline deep reinforcement learning based method focusing on the demand side to improve the utilization of transportation resources and customer satisfaction. We adopt a spatio-temporal learning method to learn the value of different time and location, then incentivize the ride requests of passengers to adjust the distribution of demand to balance the supply and demand in the system. In particular, we model the problem as a Markov Decision Process (MDP).
translated by 谷歌翻译
最近,使用批评者分配表示截断的分量批评者(TQC),显示在Mujoco连续控制基准套件的所有环境中提供最先进的渐近培训表现。此外,使用高更新到数据比和目标随机化的随机集合双Q学习(REDQ)达到了具有基于最先进的模型的方法竞争的高样本效率。在本文中,我们提出了一种新的无模型算法,具有集合(AQE)的激进Q学习,这提高了REDQ的样品效率性能和TQC的渐近性能,从而提供了整体最先进的性能在培训的所有阶段。此外,AQE非常简单,要求批评者的分布表示也不是目标随机化。
translated by 谷歌翻译
由于字体之类的文本属性是文档格式和页面样式的核心设计元素,因此自动属性识别有利于全面的实用应用。现有方法在区分不同属性方面已经产生令人满意的性能,但是它们仍然在区分类似属性的情况下只有微妙的差异。此外,在现实世界中出现意外和明显的成像扭曲的现实情况下,他们的性能严重下降。在本文中,我们旨在通过提出炸玉米饼来解决这些问题,炸玉米饼是针对最常见文档场景量身定制的文本属性识别的对比框架。具体而言,炸玉米饼利用对比学习来消除由模糊和开放式属性引起的歧义陷阱。为了实现这一目标,我们从三个角度设计了学习范式:1)生成属性视图,2)提取微妙但至关重要的细节,以及3)利用有价值的视图对学习,以充分解锁预训练潜力。广泛的实验表明,Taco超过了受监督的对应物,并在多个属性识别任务上取得了最新的进步。将提供炸玉米饼的在线服务。
translated by 谷歌翻译
给定有关消费者对不同分类的选择的数据,一个关键的挑战是开发描述和预测消费者选择行为的简约模型。一个这样的选择模型是边际分布模型,它仅需要替代方案随机实用程序的边际分布的规范,以解释选择数据。在本文中,我们开发了一组选择概率的精确表征,这些概率是通过边际分布模型在任何集合中始终如一地表示的。为了根据其实用程序的边际分布进行分组的可能性,我们表明(a)在多项式时间内可以验证选择概率数据的一致性,并且(b)找到最接近的拟合量可以减少解决混合的拟合。整数凸面程序。我们的结果表明,与随机效用模型相比,与多项式logit相比,边际分布模型提供了更好的代表力和更好的计算性能。
translated by 谷歌翻译
无人机尚未完全信任。他们对导航的无线电和摄像机的依赖提高了安全性和隐私问题。这些系统可能会失败,导致事故,或滥用未经授权的录音。考虑到最近的法规,允许商业无人机仅在晚上运营,我们提出了一种从完全新的方法,无人机从人工照明中获得导航信息。在我们的系统中,标准灯泡调制其强度发送信标,无人机用简单的光电二极管解码此信息。该光学信息与无人机中的惯性和高度传感器组合,以提供定位,而无需无线电,GPS或相机。我们的框架是第一个提供3D无人机定位的灯光,我们用一个由四个光标记和迷你无人机组成的试验台来评估它。我们表明,我们的方法允许将无人机定位在实际位置的几个小叠内,并与最先进的定位方法相比,将本地化误差降低42%。
translated by 谷歌翻译
A recent study has shown a phenomenon called neural collapse in that the within-class means of features and the classifier weight vectors converge to the vertices of a simplex equiangular tight frame at the terminal phase of training for classification. In this paper, we explore the corresponding structures of the last-layer feature centers and classifiers in semantic segmentation. Based on our empirical and theoretical analysis, we point out that semantic segmentation naturally brings contextual correlation and imbalanced distribution among classes, which breaks the equiangular and maximally separated structure of neural collapse for both feature centers and classifiers. However, such a symmetric structure is beneficial to discrimination for the minor classes. To preserve these advantages, we introduce a regularizer on feature centers to encourage the network to learn features closer to the appealing structure in imbalanced semantic segmentation. Experimental results show that our method can bring significant improvements on both 2D and 3D semantic segmentation benchmarks. Moreover, our method ranks 1st and sets a new record (+6.8% mIoU) on the ScanNet200 test leaderboard. Code will be available at https://github.com/dvlab-research/Imbalanced-Learning.
translated by 谷歌翻译
Weakly-supervised object localization aims to indicate the category as well as the scope of an object in an image given only the image-level labels. Most of the existing works are based on Class Activation Mapping (CAM) and endeavor to enlarge the discriminative area inside the activation map to perceive the whole object, yet ignore the co-occurrence confounder of the object and context (e.g., fish and water), which makes the model inspection hard to distinguish object boundaries. Besides, the use of CAM also brings a dilemma problem that the classification and localization always suffer from a performance gap and can not reach their highest accuracy simultaneously. In this paper, we propose a casual knowledge distillation method, dubbed KD-CI-CAM, to address these two under-explored issues in one go. More specifically, we tackle the co-occurrence context confounder problem via causal intervention (CI), which explores the causalities among image features, contexts, and categories to eliminate the biased object-context entanglement in the class activation maps. Based on the de-biased object feature, we additionally propose a multi-teacher causal distillation framework to balance the absorption of classification knowledge and localization knowledge during model training. Extensive experiments on several benchmarks demonstrate the effectiveness of KD-CI-CAM in learning clear object boundaries from confounding contexts and addressing the dilemma problem between classification and localization performance.
translated by 谷歌翻译
Witnessing the impressive achievements of pre-training techniques on large-scale data in the field of computer vision and natural language processing, we wonder whether this idea could be adapted in a grab-and-go spirit, and mitigate the sample inefficiency problem for visuomotor driving. Given the highly dynamic and variant nature of the input, the visuomotor driving task inherently lacks view and translation invariance, and the visual input contains massive irrelevant information for decision making, resulting in predominant pre-training approaches from general vision less suitable for the autonomous driving task. To this end, we propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving. We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos. The proposed PPGeo is performed in two stages to support effective self-supervised training. In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input. In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only. As such, the pre-trained visual encoder is equipped with rich driving policy related representations and thereby competent for multiple visuomotor driving tasks. Extensive experiments covering a wide span of challenging scenarios have demonstrated the superiority of our proposed approach, where improvements range from 2% to even over 100% with very limited data. Code and models will be available at https://github.com/OpenDriveLab/PPGeo.
translated by 谷歌翻译
In this work, we focus on instance-level open vocabulary segmentation, intending to expand a segmenter for instance-wise novel categories without mask annotations. We investigate a simple yet effective framework with the help of image captions, focusing on exploiting thousands of object nouns in captions to discover instances of novel classes. Rather than adopting pretrained caption models or using massive caption datasets with complex pipelines, we propose an end-to-end solution from two aspects: caption grounding and caption generation. In particular, we devise a joint Caption Grounding and Generation (CGG) framework based on a Mask Transformer baseline. The framework has a novel grounding loss that performs explicit and implicit multi-modal feature alignments. We further design a lightweight caption generation head to allow for additional caption supervision. We find that grounding and generation complement each other, significantly enhancing the segmentation performance for novel categories. We conduct extensive experiments on the COCO dataset with two settings: Open Vocabulary Instance Segmentation (OVIS) and Open Set Panoptic Segmentation (OSPS). The results demonstrate the superiority of our CGG framework over previous OVIS methods, achieving a large improvement of 6.8% mAP on novel classes without extra caption data. Our method also achieves over 15% PQ improvements for novel classes on the OSPS benchmark under various settings.
translated by 谷歌翻译
Nearest-Neighbor (NN) classification has been proven as a simple and effective approach for few-shot learning. The query data can be classified efficiently by finding the nearest support class based on features extracted by pretrained deep models. However, NN-based methods are sensitive to the data distribution and may produce false prediction if the samples in the support set happen to lie around the distribution boundary of different classes. To solve this issue, we present P3DC-Shot, an improved nearest-neighbor based few-shot classification method empowered by prior-driven data calibration. Inspired by the distribution calibration technique which utilizes the distribution or statistics of the base classes to calibrate the data for few-shot tasks, we propose a novel discrete data calibration operation which is more suitable for NN-based few-shot classification. Specifically, we treat the prototypes representing each base class as priors and calibrate each support data based on its similarity to different base prototypes. Then, we perform NN classification using these discretely calibrated support data. Results from extensive experiments on various datasets show our efficient non-learning based method can outperform or at least comparable to SOTA methods which need additional learning steps.
translated by 谷歌翻译